# Intentional explanation as a cognitive function of applied mathematics

Liberal Arts in Russia. 2017. Vol. 6. No. 1. Pp. 18-32.

Get the full text (Russian) Email: kazaryanvp@mail.ru#### Abstract

Modern applied mathematics is focused on global problems of civilization. Its ultimate aim is to provide human socio-cultural activity with tool and project. That is why applied mathematics nowadays usually gives scientific explanation typical to sociological knowledge - an intentional explanation. In the article, a question is discussed about the abilities of mathematics to explain. This question was put by J. Brown in the article published in the journal “Epistemology and Philosophy of Science”. The philosophy of mathematics, as well as the philosophy of science, cannot do without consideration of philosophical problems related to the development of modern applied mathematics as a vast area of modern science. In the past half century, the interest in the philosophical interpretation of the application of the process of mathematics has intensified. In the domestic literature, interest in this problem has blossomed in 70-80 years. As a result, “the application of mathematics” was interpreted in two ways: as the mathematization of science and mathematics as a way to participate in solving the problems of life. In today’s context, the theme of the effectiveness of mathematics sounded once again. However, it has a new aspect: the effectiveness of mathematics as a tool to be used in human activities. The term “applied mathematics” obtained three meanings: 1) the usefulness of mathematics to human life and society; 2) mathematization - the application of mathematics in other fields of knowledge; 3) modern applied mathematics - branch of mathematics, the core of which is the computational mathematics and computer systems. The author analyzed the cognitive situation corresponding to these three meanings. In the third case, i.e. in modern applied mathematics, the study consists of two phases: (a) the nomination of a mathematical model and (b) the study of the mathematical model. It is appropriate to call the explanation given by the step (a) as the intentional explanation. Because the first of the two stages of the research in applied mathematics - the creation of the model and the study the model - is the basis of the second, the reasonable explanation of the possible actions of the actor given in applied mathematics is called intentional.

#### Keywords

- • modern applied mathematics
- • computational mathematics
- • mathematical modeling
- • object and subject of mathematical research
- • actor
- • social action
- • vital problem situation
- • intentional explanation

#### References

- Aitmatov Ch. Issyk-Kul'skii forum. Frunze, 1987.
- Barbur I. Etika v vek tekhnologii [Ethics in the age of technology]. Moscow: BBI, 2001.
- Blekhman I. I., Myshkis A. D., Panovko Ya. G. Mekhanika tverdogo tela. 1967. No. 2.
- Blekhman I. I., Myshkis A. D., Panovko Ya. T. Prikladnaya matematika: predmet, logika, osobennosti podkhodov [Applied mathematics: subject, logic, features of approaches]. Kiev: Naukova dumka, 1976.
- Dzheri D., Dzheri D. Bol'shoi tolkovyi sotsiologicheskii slovar' [The large explanatory sociological dictionary]. Moscow: Veche, 1999.
- Braun Dzh. R. Epistemologiya i filosofiya nauki. T. XIX. No. 1.
- Vigner E. Nepostizhimaya effektivnost' matematiki v estestvennykh naukakh [The inconceivable effectiveness of mathematics in the natural sciences]. 1960.
- Vorob'ev N. N. Matrichnye igry. Matrichnye igry. Moscow, 1961.
- Vrigt G. fon. Logiko-filosofskie issledovaniya. Izbrannye Trudy [Logico-philosophical studies. Selected works]. Moscow: Progress, 1986.
- Hilbert D. Kantovskii sbornik. Kaliningrad, 1990.
- Husserl E. Filosofiya kak strogaya nauka. Novocherkassk: Saguna, 1994.
- Ivin A. A. Aksiologiya [Axiology]. Moscow: Vysshaya shkola, 2006.
- Kazaryan V. P. Matematika i kul'tura [Mathematics and culture]. Moscow: Nauchnyi mir, 2004.
- Kazaryan V. P. Liberal Arts in Russia. 2013. Vol. 2. No. 3.
- Lolli G. Filosofiya matematiki: nasledie dvadtsatogo stoletiya [Philosophy of mathematics: the legacy of the twentieth century]. N. Novgorod: Izd-vo Nizhegorodskogo universiteta im. N. I. Lobachevskogo, 2012.
- Lyapunov A. A. L'yus R. D., Raifa X. Igry i resheniya: Vvedenie i kritich. obzor. Moscow: Inostr. liter. 1961. Pp. 5-9.
- Merkulov I. P. Epistemologiya i filosofiya nauki. T. XIV. No. 4.
- Moiseev N. N. Sovremennyi ratsionalizm [Modern rationalism]. Moscow: MGVP KOKS, 1995.
- Matematizatsiya sovremennoi nauki: predposylki, problemy, perspektivy [The mathematization of modern science: preconditions, problems, prospects]. Moscow: Izd-vo Moskovskogo universiteta, 1986.
- Nalimov V. V. Logicheskie osnovaniya prikladnoi matematiki [Logical bases of applied mathematics]. Moscow: Izd-vo Moskovskogo universiteta, 1971.
- Narin'yani A. S. Voprosy filosofii. 2011. No. 1.
- Nikiforov A. L. Filosofiya nauki: istoriya i teoriya [Philosophy of science: history and theory]. Moscow: Ideya-Press, 2006.
- Pozer Kh. Epistemologiya i filosofiya nauki. 2004. Vol. 1. No. 1.
- Poia D. Matematika i pravdopodobnye rassuzhdeniya [Mathematics and plausible reasoning]. Moscow: Nauka, 1975.
- Rozov M. A. Teoriya sotsial'nykh estafet i problemy epistemologii [The theory of social relays and problems of epistemology]. Moscow: Novyi khronograf, 2008.
- Samarskii A. A. Vestnik AN SSSR. 1979. No. 5.
- Sultanova L. B. Liberal Arts in Russia. 2013. Vol. 2. No. 3.
- Tikhonov A. N., Samarskii A. A. Zhurnal vychislitel'noi matematiki i matematicheskoi fiziki. 1961. No. 1.
- Tolstoi L. N. PSS. Vol. 31. Moscow: Gosudarstvennoe Izdatel'stvo Khudozhestvennoi Literatury, 1954. Pp. 87-95.
- Fonfizin D. I. Nedorosl'. Yavlenie VIII.
- Khardi G. Apologiya matematika [The apology of mathematics]. Izhevsk, 2000.
- Shaposhnikov V. A. Epistemologiya i filosofiya nauki. Moscow: Knorus, 2008. Vol. 15. No. 1. Pp. 124-131.
- Arnol'd V. I. Nuzhna li v shkole matematika? [Do we need mathematics at school?] Moscow: Izd-vo: MTsNMO, 2013.